Multipartite Ranking-Selection of Low-Dimensional Instances by Supervised Projection to High-Dimensional Space
نویسنده
چکیده
Pruning of redundant or irrelevant instances of data is a key to every successful solution for pattern recognition. In this paper, we present a novel ranking-selection framework for low-length but highly correlated instances. Instead of working in the low-dimensional instance space, we learn a supervised projection to high-dimensional space spanned by the number of classes in the dataset under study. Imposing higher distinctions via exposing the notion of labels to the instances, lets to deploy one versus all ranking for each individual classes and selecting quality instances via adaptive thresholding of the overall scores. To prove the efficiency of our paradigm, we employ it for the purpose of texture understanding which is a hard recognition challenge due to high similarity of texture pixels and low dimensionality of their color features. Our experiments show considerable improvements in recognition performance over other local descriptors on several publicly available datasets.
منابع مشابه
Supervised Feature Extraction of Face Images for Improvement of Recognition Accuracy
Dimensionality reduction methods transform or select a low dimensional feature space to efficiently represent the original high dimensional feature space of data. Feature reduction techniques are an important step in many pattern recognition problems in different fields especially in analyzing of high dimensional data. Hyperspectral images are acquired by remote sensors and human face images ar...
متن کاملFeature Selection for Small Sample Sets with High Dimensional Data Using Heuristic Hybrid Approach
Feature selection can significantly be decisive when analyzing high dimensional data, especially with a small number of samples. Feature extraction methods do not have decent performance in these conditions. With small sample sets and high dimensional data, exploring a large search space and learning from insufficient samples becomes extremely hard. As a result, neural networks and clustering a...
متن کاملHyperspectral Image Classification Based on the Fusion of the Features Generated by Sparse Representation Methods, Linear and Non-linear Transformations
The ability of recording the high resolution spectral signature of earth surface would be the most important feature of hyperspectral sensors. On the other hand, classification of hyperspectral imagery is known as one of the methods to extracting information from these remote sensing data sources. Despite the high potential of hyperspectral images in the information content point of view, there...
متن کاملتعیین ماشینهای بردار پشتیبان بهینه در طبقهبندی تصاویر فرا طیفی بر مبنای الگوریتم ژنتیک
Hyper spectral remote sensing imagery, due to its rich source of spectral information provides an efficient tool for ground classifications in complex geographical areas with similar classes. Referring to robustness of Support Vector Machines (SVMs) in high dimensional space, they are efficient tool for classification of hyper spectral imagery. However, there are two optimization issues which s...
متن کاملSupervised classification in high-dimensional space: geometrical, statistical, and asymptotical properties of multivariate data
As the number of spectral bands of high spectral resolution data increases, the capability to detect more detailed classes should also increase, and the classification accuracy should increase as well. Often the number of labeled samples used for supervised classification techniques is limited, thus limiting the precision with which class characteristics can be estimated. As the number of spect...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1606.07575 شماره
صفحات -
تاریخ انتشار 2016